173 research outputs found

    Ga-68-PSMA ligand PET/CT in patients with prostate cancer: How we review and report

    Get PDF
    Recently, positron emission tomography (PET) imaging using PSMA-ligands has gained high attention as a promising new radiotracer in patients with prostate cancer (PC). Several studies promise accurate staging of primary prostate cancer and restaging after biochemical recurrence with Ga-68-PSMA ligand Positron emission tomography/computed tomography (PET/CT). However, prospective trials and clinical guidelines for this new technique are still missing. Therefore, we summarized our experience with Ga-68-PSMA ligand PET/CT examinations in patients with primary PC and biochemical recurrence. It focuses on the technical and logistical aspects of Ga-68-PSMA ligand PET/CT examination as well as on the specific background for image reading discussing also potential pitfalls. Further, it includes relevant issues on free-text as well as structured reporting used in daily clinical routine

    Ga-68-PSMA ligand PET/CT in patients with prostate cancer: How we review and report

    Get PDF
    Recently, positron emission tomography (PET) imaging using PSMA-ligands has gained high attention as a promising new radiotracer in patients with prostate cancer (PC). Several studies promise accurate staging of primary prostate cancer and restaging after biochemical recurrence with Ga-68-PSMA ligand Positron emission tomography/computed tomography (PET/CT). However, prospective trials and clinical guidelines for this new technique are still missing. Therefore, we summarized our experience with Ga-68-PSMA ligand PET/CT examinations in patients with primary PC and biochemical recurrence. It focuses on the technical and logistical aspects of Ga-68-PSMA ligand PET/CT examination as well as on the specific background for image reading discussing also potential pitfalls. Further, it includes relevant issues on free-text as well as structured reporting used in daily clinical routine

    Three-Dimensional High-Resolution Black-Blood Magnetic Resonance Imaging for Detection of Arteritic Anterior Ischemic Optic Neuropathy in Patients With Giant Cell Arteritis

    Get PDF
    Objectives: Arteritic anterior ischemic optic neuropathy (A-AION) caused by inflammatory occlusion of the posterior ciliary arteries is the most common reason for irreversible vision loss in patients with giant cell arteritis. Atypical clinical presentation and negative funduscopy can delay systemic high-dose corticosteroid therapy to prevent impending permanent blindness and involvement of the contralateral eye. The purpose of this study was to assess the diagnostic accuracy of 3-dimensional (3D) high-resolution T1-weighted black-blood magnetic resonance imaging (T1-BB-MRI) for the detection of posterior ciliary artery involvement in patients with giant cell arteritis and funduscopic A-AION. Materials and Methods: After institutional review board approval and informed consent, 27 patients with suspected giant cell arteritis and vision disturbances were included in this monocentric prospective cohort study. Giant cell arteritis was diagnosed in 18 patients according to the diagnostic reference standard (6 men, 73.8 [69.0-78.0] years);14 of those were positive for A-AION. Precontrast and postcontrast 3D T1-BB-MRI was performed in all 27 patients. Two radiologists separately assessed image quality and local fat suppression (4-point scale), visual contrast enhancement (3-point scale), and diagnostic confidence (5-point scale) regarding arteritic posterior ciliary artery involvement. Magnetic resonance imaging findings were assessed in comparison to funduscopy. Statistical analysis included accuracy parameters and interrater agreement. Results: Sensitivity of 3D T1-BB-MRI was 92.9% (95% confidence interval, 66.1%-99.8%) and specificity was 92.3% (95% confidence interval, 64.0%-99.8%) for detection of A-AION-positive patients. Image quality and local fat suppression were assessed with 3.2 +/- 0.8 (median 3) and 3.8 +/- 0.5 (median 4). Visual contrast enhancement with 2.3 +/- 0.8 (median 3) and diagnostic confidence was rated at 4.7 +/- 0.5 (median 5). Interrater agreement was high (kappa = 0.85, P < 0.001). Three-dimensional T1-BB-MRI displayed bilateral findings in 50% of the cases, whereas only unilateral A-AION was detected in funduscopy as a possible indication for the contralateral eye at risk. Conclusions: Three-dimensional T1-BB-MRI allows accurate detection of arteritic posterior ciliary artery involvement in patients with A-AION. Further, 3D T1-BB-MRI seems to display arteritic involvement of the posterior ciliary arteries earlier than funduscopy and might, therefore, display "vision-at-risk" in patients with visual impairment and suspected giant cell arteritis but unremarkable funduscopy

    Multiple Sclerosis: Improved Detection of Active Cerebral Lesions With 3-Dimensional T1 Black-Blood Magnetic Resonance Imaging Compared With Conventional 3-Dimensional T1 GRE Imaging

    Get PDF
    Objectives: The aim of this study was to assess the diagnostic accuracy of a modified high-resolution whole-brain three-dimensional T1-weighted black-blood sequence (T1-weighted modified volumetric isotropic turbo spin echo acquisition [T1-mVISTA]) in comparison to a standard three-dimensional T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE) sequence for detection of contrast-enhancing cerebral lesions in patients with relapsing-remitting multiple sclerosis (MS).& para;& para;Materials and Methods: After institutional review board approval and informed consent, 22 patients (8 men;aged 31.0 +/- 9.2 years) with relapsing-remitting MS were included in this monocentric prospective cohort study.& para;& para;Contrast-enhanced T1-mVISTA and MP-RAGE, both with 0.8 mm(3) resolution, were performed in all patients. In a substudy of 12 patients, T1-mVISTA was compared with a T1-mVISTA with 1.0 mm(3) resolution (T1-mVISTA_1.0). Reference lesions were 2-defined by an experienced neuroradiologist using all available sequences and served as the criterion standard. T1-mVISTA, T1-mVISTA_1.0, and MP-RAGE sequences were read in random order 4 weeks apart. Image quality, visual contrast enhancement, contrast-to-noise-ratio (CNR), diagnostic confidence, and lesion size were assessed and compared by Wilcoxon and Mann-Whitney U tests.& para;& para;Results: Eleven of 22 patients displayed contrast-enhancing lesions. Visual contrast enhancement, CNR, and diagnostic confidence of contrast-enhancing MS lesions were significantly increased in T1-mVISTA compared with MP-RAGE (P < 0.001). Significantly more contrast-enhancing lesions were detected with T1-mVISTA than with MP-RAGE (71 vs 39, respectively;P < 0.001). With MP-RAGE, 25.6% of lesions were missed in the initial reading, whereas only 4.2% of lesions were missed with T1-mVISTA. Increase of the voxel volume from 0.8 mm to 1.0 mm isotropic in T1-mVISTA_1.0 did not affect the detect-ability of lesions, whereas scan time was decreased from 4:43 to 1:55 minutes.& para;& para;Conclusions: Three-dimensional T1-mVISTA improves the detection rates of contrast-enhancing cerebral MS lesions compared with conventional 3D MP-RAGE sequences by increasing CNR of lesions and might, therefore, be useful in patient management

    Wavelet-Based Angiographic Reconstruction of Computed Tomography Perfusion Data Diagnostic Value in Cerebral Venous Sinus Thrombosis

    Get PDF
    Objective: The aim of this study was to test the diagnostic value of wavelet-based angiographic reconstruction of CT perfusion data (waveletCTA) to detect cerebral venous sinus thrombosis (CVST) in patients who underwent whole-brain CT perfusion imaging (WB-CTP). Materials and Methods: Datasets were retrospectively selected from an initial cohort of 2863 consecutive patients who had undergone multiparametric CT including WB-CTP. WaveletCTA was reconstructed from WB-CTP: the angiographic signal was generated by voxel-based wavelet transform of time attenuation curves (TACs) from WB-CTP raw data. In a preliminary clinical evaluation, waveletCTA was analyzed by 2 readers with respect to presence and location of CVST. Venous CT and MR angiography (venCTA/venMRA) served as reference standard. Diagnostic confidence for CVST detection and the quality of depiction for venous sections were evaluated on 5-point Likert scales. Thrombus extent was assessed by length measurements. The mean CT attenuation and waveletCTA signal of the thrombus and of flowing blood were quantified. Results: Sixteen patients were included: 10 patients with venCTA-/venMRAconfirmed CVST and 6 patients with arterial single-phase CT angiography (artCTA)-suspected but follow-up-excluded CVST. The reconstruction of waveletCTA was successful in all patients. Among the patients with confirmed CVST, waveletCTA correctly demonstrated presence, location, and extent of the thrombosis in 10/10 cases. In 6 patients with artCTA-suspected but follow-up-excluded CVST, waveletCTA correctly ruled out CVST in 5 patients. Reading waveletCTA in addition to artCTA significantly increased the diagnostic confidence concerning CVST compared with reading artCTA alone (4.4 vs 3.6, P = 0.044). The mean flowing blood-to-thrombus ratio was highest in waveletCTA, followed by venCTA and artCTA (146.2 vs 5.9 vs 2.6, each with P < 0.001). In waveletCTA, the venous sections were depicted better compared with artCTA (4.2 vs 2.6, P < 0.001), and equally well compared with venCTA/venMRA (4.2 vs 4.1, P = 0.374). Conclusions: WaveletCTA was technically feasible in CVST patients and reliably identified CVST in a preliminary clinical evaluation. WaveletCTA might serve as an additional reconstruction to rule out or incidentally detect CVST in patients who undergo WB-CTP

    Penumbra Pattern Assessment in Acute Stroke Patients: Comparison of Quantitative and Non-Quantitative Methods in Whole Brain CT Perfusion

    Get PDF
    Background and Purpose: While penumbra assessment has become an important part of the clinical decision making for acute stroke patients, there is a lack of studies measuring the reliability and reproducibility of defined assessment techniques in the clinical setting. Our aim was to determine reliability and reproducibility of different types of three-dimensional penumbra assessment methods in stroke patients who underwent whole brain CT perfusion imaging (WB-CTP). Materials and Methods: We included 29 patients with a confirmed MCA infarction who underwent initial WB-CTP with a scan coverage of 100 mm in the z-axis. Two blinded and experienced readers assessed the flow-volume-mismatch twice and in two quantitative ways: Performing a volumetric mismatch analysis using OsiriX imaging software (MMVOL) and visual estimation of mismatch (MMEST). Complementarily, the semiquantitative Alberta Stroke Programme Early CT Score for CT perfusion was used to define mismatch (MMASPECTS). A favorable penumbral pattern was defined by a mismatch of >= 30% in combination with a cerebral blood flow deficit of = 1, respectively. Inter-and intrareader agreement was determined by Kappa-values and ICCs. Results: Overall, MMVOL showed considerably higher inter-/intrareader agreement (ICCs: 0.751/0.843) compared to MMEST (0.292/0.749). In the subgroup of large (>= 50 mL) perfusion deficits, inter-and intrareader agreement of MMVOL was excellent (ICCs: 0.961/0.942), while MMEST interreader agreement was poor (0.415) and intrareader agreement was good (0.919). With respect to penumbra classification, MMVOL showed the highest agreement (interreader agreement: 25 agreements/4 non-agreements/kappa: 0.595;intrareader agreement 27/2/0.833), followed by MMEST (22/7/0.471;23/6/0.577), and MMASPECTS (18/11/0.133;21/8/0.340). Conclusion: The evaluated approach of volumetric mismatch assessment is superior to pure visual and ASPECTS penumbra pattern assessment in WB-CTP and helps to precisely judge the extent of 3-dimensional mismatch in acute stroke patients

    Assessing Pulmonary Perfusion in Emphysema Automated Quantification of Perfused Blood Volume in Dual-Energy CTPA

    Get PDF
    Objectives: The objective of this study was to determine whether automated quantification of lung perfused blood volume (PBV) in dual-energy computed tomographic pulmonary angiography (DE-CTPA) can be used to assess the severity and regional distribution of pulmonary hypoperfusion in emphysema. Materials and Methods: We retrospectively analyzed 40 consecutive patients (mean age, 67 13] years) with pulmonary emphysema, who have no cardiopulmonary comorbidities, and a DE-CTPA negative for pulmonary embolism. Automated quantification of global and regional pulmonary PBV was performed using the syngo Dual Energy application (Siemens Healthcare). Similarly, the global and regional degrees of parenchymal hypodensity were assessed automatically as the percentage of voxels with a computed tomographic density less than -900 Hounsfield unit. Emphysema severity was rated visually, and pulmonary function tests were obtained by chart review, if available. Results: Global PBV generated by automated quantification of pulmonary PBV in the DE-CTPA data sets showed a moderately strong but highly significant negative correlation with residual volume in percentage of the predicted residual volume (r = -0.62; P = 0.002; n = 23) and a positive correlation with forced expiratory volume in 1 second in percentage of the predicted forced expiratory volume in 1 second (r = 0.67; P < 0.001; n = 23). Global PBV values strongly correlated with diffusing lung capacity for carbon monoxide (r = 0.80; P < 0.001; n = 15). Pulmonary PBV values decreased with visual emphysema severity (r = -0.46, P = 0.003, n = 40). Moderate negative correlations were found between global PBV values and parenchymal hypodensity both in a per-patient (r = -0.63; P G 0.001; n = 40) and per-region analyses (r = -0.62; P < 0.001; n = 40). Conclusions: Dual-energy computed tomographic pulmonary angiography allows simultaneous assessment of lung morphology, parenchymal density, and pulmonary PBV. In patients with pulmonary emphysema, automated quantification of pulmonary PBV in DE-CTPA can be used for a quick, reader-independent estimation of global and regional pulmonary perfusion, which correlates with several lung function parameters

    Early Imaging Prediction of Malignant Cerebellar Edema Development in Acute Ischemic Stroke

    Get PDF
    Background and Purpose-Malignant cerebellar edema (MCE) is a life-threatening complication of acute ischemic stroke that requires timely diagnosis and management. Aim of this study was to identify imaging predictors in initial multiparametric computed tomography (CT), including whole-brain CT perfusion (WB-CTP). Methods-We consecutively selected all subjects with cerebellar ischemic WB-CTP deficits and follow-up-confirmed cerebellar infarction from an initial cohort of 2635 patients who had undergone multiparametric CT because of suspected stroke. Follow-up imaging was assessed for the presence of MCE, measured using an established 10-point scale, of which scores >= 4 are considered malignant. Posterior circulation-Acute Stroke Prognosis Early CT Score (pc-ASPECTS) was determined to assess ischemic changes on noncontrast CT, CT angiography (CTA), and parametric WB-CTP maps (cerebellar blood flow [CBF];cerebellar blood volume;mean transit time;time to drain). Fisher's exact tests, Mann-Whitney U tests, and receiver operating characteristics analyses were performed for statistical analyses. Results-Out of a total of 51 patients who matched the inclusion criteria, 42 patients (82.4%) were categorized as MCE-and 9 (17.6%) as MCE+. MCE+ patients had larger CBF, cerebellar blood volume, mean transit time, and time to drain deficit volumes (all with P0.05). Receiver operating characteristics analyses yielded the largest area under the curve values for the prediction of MCE development for CBF (0.979) and cerebellar blood volume deficit volumes (0.956) and pc-ASPECTS on CBF (0.935), whereas pc-ASPECTS on noncontrast CT (0.648) and CTA (0.684) had less diagnostic value. The optimal cutoff value for CBF deficit volume was 22 mL, yielding 100% sensitivity and 90% specificity for MCE classification. Conclusions-WB-CTP provides added diagnostic value for the early identification of patients at risk for MCE development in acute cerebellar stroke

    Lack of association of MRI determined subclinical cardiovascular disease with dizziness and vertigo in a cross-sectional population-based study

    Get PDF
    OBJECTIVE We investigated the association between subclinical cardiovascular diseases assessed by MRI examination and symptoms of dizziness and vertigo in participants of a population-based sample. METHODS Data from 400 participants (169 women) aged from 39 to 73 of a cross-sectional MRI sub-study of the \dqKooperative Gesundheitsforschung in der Region Augsburg\dq (KORA) FF4 study from the south of Germany was used. MRI determined subclinical cardiovascular diseases include left and right ventricular structure and function as well as the presence of carotid plaque and carotid wall thickness. Cerebrum diseases include white matter lesions (WML) and cerebral microbleeds (CMB). The main outcomes of dizziness and vertigo were assessed by standardized interview. Logistic regression models were applied and adjusted odds ratios (OR) with 95% confidence intervals (CI) were provided. RESULTS Lifetime and 12-month prevalence of dizziness and vertigo were 30% (95%CI 26% to 35%) and 21% (95%CI 17% to 26%) respectively in this sample. On multivariable analysis, cardiac and carotid measurements were not associated with dizziness and vertigo excluding orthostatic vertigo (20%, 95CI 16% to 24%). Only in male participants, there was a significant association between WML and the presence of dizziness and vertigo (OR = 2.95, 95%CI 1.08 to 8.07). There was no significant association of CMB with dizziness and vertigo. However, CMB and WML were tending to associate with a higher risk of dizziness and vertigo in the whole sample (CMB: OR = 1.48, 95%CI 0.70; 3.15; WML: OR = 1.71, 95%CI 0.80 to 3.67;), in persons with prediabetes and diabetes (WML: OR = 2.71, 95%CI 0.89 to 8.23) and in men with normal glucose metabolism (CMB: OR = 2.60, 95%CI 0.56 to 12.0; WML: OR = 3.08, 95%CI 0.58 to 16.5). CONCLUSIONS In this sample of participants without manifest cardiovascular diseases, subclinical left and right ventricular function and carotid structure were consistently not associated with dizziness and vertigo. Subclinical cerebrum measurements, however, tend to increase the risk for dizziness and vertigo, especially in men and in persons with prediabetes or diabetes
    • …
    corecore